
Transient Execution
Attacks

explained to your Grandma

by pietroborrello

inspired by: [A Systematic Evaluation of Transient Execution Attacks and Defenses]

https://arxiv.org/pdf/1811.05441

Outline

1. How do Modern Processors work?

2. Let’s dive into micro-architectural attacks!

AMD Ryzen

AMD Ryzen

Modern Processors

Modern Processors

add qword ptr [rax], rbx

Modern Processors

add qword ptr [rax], rbx

Modern Processors

add qword ptr [rax], rbx

µops

µops µops

µops

Modern Processors

add qword ptr [rax], rbx

µops

µops µops

µops

µops
µops µops

µops

Modern Processors

add qword ptr [rax], rbx

µops

µops µops

µops

µops µops µops µops

Modern Processors

add qword ptr [rax], rbx

µops

µops µops

µops

µops

µops

µops

µops

Modern Processors

add qword ptr [rax], rbx

µops

µops µops

µops

µops

µops

µops

µopsµops

µops

µops

µops

µops

µops

jne 0xdeadbeef
cmp rdx, qword ptr [rax]

Modern Processors

add qword ptr [rax], rbx

µops

µops

µops

µopsµops

µops

µops

µops

µops

µops

cmp rdx, qword ptr [rax]
jne 0xdeadbeef

…

…

…

…

Modern Processors

add qword ptr [rax], rbx

µops

µops

µops

µopsµops

µops

µops

µops

µops

µops

cmp rdx, qword ptr [rax]
jne 0xdeadbeef

…

…

…

…

Modern Processors

add qword ptr [rax], rbx

µops

µops

µops

µopsµops

µops

µops

µops

µops

µops

µops

µops

µops

jne 0xdeadbeef

maybe
not

maybe
yes

cmp rdx, qword ptr [rax]

ops ops

Modern Processors

add qword ptr [rax], rbx

µops
µopsµops

µops

µops

µops

µops

µops

µops

µops

µops

jne 0xdeadbeef
cmp rdx, qword ptr [rax]

µops

µops

REORDER
BUFFER

Modern Processors

add qword ptr [rax], rbx

µops

µops

µops

µops

µops

µops

µops

µops

jne 0xdeadbeef
cmp rdx, qword ptr [rax]

REORDER
BUFFER

µops

Modern Processors

add qword ptr [rax], rbx

µops

µops

µops
µops

µops

jne 0xdeadbeef
cmp rdx, qword ptr [rax]

µops

REORDER
BUFFER

oh shit it
was NOT!

maybe
yes

ops ops

Modern Processors

add qword ptr [rax], rbx

µops

µops

jne 0xdeadbeef
cmp rdx, qword ptr [rax]

µops

REORDER
BUFFER

oh shit it
was NOT!

maybe
yes

ops ops

Modern Processors

add qword ptr [rax], rbx

µops
µopsµops

µops

µops

µops

µops

µops

µops

µops

µops

jne 0xdeadbeef
cmp rdx, qword ptr [rax]

µops

µops

REORDER
BUFFER

oh shit RAX
was pointing

to kernel
memory!!

Modern Processors

add qword ptr [rax], rbx

µops
µopsµops

µops

µops

µops

µops

µops

µops

µops

µops

jne 0xdeadbeef
cmp rdx, qword ptr [rax]

µops

µops

REORDER
BUFFER

oh shit RAX
was pointing

to kernel
memory!!

Modern Processors

add qword ptr [rax], rbx

µops
µopsµops

µops

µops

µops

µops

µops

µops

µops

µops

jne 0xdeadbeef
cmp rdx, qword ptr [rax]

µops

µops

REORDER
BUFFER

oh shit RAX
was pointing

to kernel
memory!!

General
Protection

Error!

Roll Back?

● What does it mean to roll back (undo) an operation for a CPU?
● You cannot undo a Logical operation (it was an Electrical signal!)
● But you can hide what you did

⇒ Behave as nothing happened

● Do not save the operation into the architectural state

What is the architectural state?

● General Purpose Registers (RAX, RSP, ...)
● Control Registers (RFLAGS, GDTR, IDTR, CR0, CR1, ...)
● Model Specific Registers
● Floating Point Registers
● Memory
● …

But, this doesn’t include:

● All Instruction and Data Caches (L1, L2, ...), TLB, ...
● Branch Predictors
● And all the microarchitecture that we just saw...

LEAKY BOI?

● So we are using data or executing code we shouldn’t and we are exposing
it into the microarchitecture!

● But we cannot access directly the microarchitecture

LEAKY BOI?

● So we are using data or executing code we shouldn’t and we are exposing
it into the microarchitecture!

● But we cannot access directly the microarchitecture
● Directly...

1. Read kernel dword into X

2. if(X == 0xdeadbeef)

 flush_entire_cache

When resuming from SIGSEGV,
is the cache flushed?

Executed only transiently

Some order

● Two ways to induce a roll back of a transient execution:

Out-Of-Order Exceptions Misprediction

MELTDOWN Family SPECTRE Family

Meltdown Family

● Exceptions are enforced lazily

⇒ There is a small window where we can use the result of faulty
instructions, and access data that should be architecturally inaccessible
(e.g. kernel memory!)

Meltdown Family

● Exceptions are enforced lazily

⇒ There is a small window where we can use the result of faulty
instructions, and access data that should be architecturally inaccessible
(e.g. kernel memory!)

● What to do with the results of
faulty instructions?
How can we read them?

⇒ Use a micro-architectural covert channel!

Flush+Reload

● Use cache as covert channel:
HIT: fast
MISS: slow

1. char array[256]

2. flush all array cache lines

3. read secret byte into X

4. tmp = array[X]

Flush+Reload

● Use cache as covert channel:
HIT: fast
MISS: slow

1. char array[256]

2. flush all array cache lines

3. read secret byte into X

4. tmp = array[X]

1. for(i = 0; i < 256; i++)

measureTime(array[i])

2. The index with fastest access

corresponds to X

Flush+Reload

● Use cache as covert channel:
HIT: fast
MISS: slow

1. char array[256 * 4096]

2. flush all array cache lines

3. read secret byte into X

4. tmp = array[X * 4096]

1. for(i = 0; i < 256; i++)

measureTime(array[i*4096])

2. The index with fastest access

corresponds to X

Meltdown Attacks

● Different types of faults can be involved, depending on what I shouldn’t
read:
○ Kernel Memory
○ Secure Enclave Memory
○ Privileged System Registers
○ FPU Registers of other Processes
○ Unreadable pages, bypassing Protection Keys
○ Out-of-Bound access driven by exceptions (more with Spectre)

Supervisor Bypass

● Reading Kernel Memory rises a General Protection Fault
● But we can access the value during transient execution!

● Dump entire kernel memory byte by byte

1. char array[256 * 4096]

2. flush all array cache lines

3. read kernel byte into X

4. tmp = array[X * 4096]

1. handle SIGSEGV

2. for(i = 0; i < 256; i++)

measureTime(array[i*4096])

3. The index with fastest access

corresponds to X

Enclave Bypass (Foreshadow)

● Trusted execution environment, with integrity and confidentiality guarantees
● Isolated and HW encrypted compartment, even secret for the kernel
● The memory is silently replaced with 0xFF when try to read ⇒ No fault!

Enclave Bypass (Foreshadow)

● Trusted execution environment, with integrity and confidentiality guarantees
● Isolated and HW encrypted compartment, even secret for the kernel
● The memory is silently replaced with 0xFF when try to read ⇒ No fault!

1. Execute the enclave to bring unencrypted data to L1 cache
2. Manually revoke access permission to enclave memory
3. Now when trying to access enclave memory we have a Page Fault!

Before 0xFF substitution takes place

⇒ Then same attack!

(And can also be extended to break VM isolation)

System Register Bypass

● Privileged system registers can be read and written by the kernel
● They contain private kernel informations

(i.e. IA32_LSTAR MSR contains fast syscall handler address)
● Accessing them from users space issues a General Protection Fault

1. char array[256 * 4096]

2. flush all array cache lines

3. rdmsr byte into X

4. tmp = array[X * 4096]

System Register Bypass

● Privileged system registers can be read and written by the kernel
● They contain private kernel informations

(i.e. IA32_LSTAR MSR contains fast syscall handler address)
● Accessing them from users space issues a General Protection Fault

1. char array[256 * 4096]

2. flush all array cache lines

3. rdmsr byte into X

4. tmp = array[X * 4096]

⇒ Now you have broken KASLR!

FPU Register Bypass

● At context switches the kernel saves all the registers of the current process
● Floating Point Unit and SIMD registers are huge!

So kernel doesn’t save them, but marks them as NOT AVAILABLE
● If FPU or SIMD is used by next process, a NOT AVAILABLE exception is

raised, and the kernel can save them, before next process can access them

FPU Register Bypass

● At context switches the kernel saves all the registers of the current process
● Floating Point Unit and SIMD registers are huge!

So kernel doesn’t save them, but marks them as NOT AVAILABLE
● If FPU or SIMD is used by next process, a NOT AVAILABLE exception is

raised, and the kernel can save them, before next process can access them

⇒ EXCEPTION??

1. char array[256 * 4096]

2. flush all array cache lines

3. read SIMD byte into X

4. tmp = array[X * 4096]

FPU Register Bypass

● At context switches the kernel saves all the registers of the current process
● Floating Point Unit and SIMD registers are huge!

So kernel doesn’t save them, but marks them as NOT AVAILABLE
● If FPU or SIMD is used by next process, a NOT AVAILABLE exception is

raised, and the kernel can save them, before next process can access them

⇒ EXCEPTION??

Can leak SIMD cryptographic computations!

1. char array[256 * 4096]

2. flush all array cache lines

3. read SIMD byte into X

4. tmp = array[X * 4096]

Other Bypasses

● With the same approach we can bypass memory protection (i.e. Execute
Only) even if enforced with Protection Keys

● Additionally can perform out of bound speculative reads, if enforced with
bound instruction

● The CPU executes predicted instructions transiently

⇒ There is a small window of instructions that shouldn’t be executed, due to
misprediction

● If we manage to control the mispredictions,
we may be able to induce a program execute
(transiently) arbitrary code

⇒ Predictors are shared between processes!

Spectre Family

Predictors

Pattern History Table

jne 0xdeadbeef

Will it take the branch?

Branch Target Buffer

Where will it jump?

Store to Load Forwarding

Is the same address?

Return Stack Buffer

Where will I return?

call [rax]

ret mov [rax+1], 1
 mov rdx, [rcx-1]

if (x < len(array1)) {

 y = array2[array1[x] * 4096]; }

● This is a dangerous loop to mispredict!
● If the loop is taken long enough, the Pattern History Table will predict it will

be taken not depending on the value of x
⇒ bypass the if check transiently

⇒ read array1[x] with arbitrary x, and then array2 will act as covert channel!

● We have an arbitrary out of bound read in the context of a process
(i.e. Javascript sandboxed program executed on your machine!)

PHT - Bounds Check Bypass

if (x < len(array1)) {

 y = array2[array1[x] * 4096]; }

● The predictor can be mistrained from the same process, making it
repeatedly executing on safe inputs, and then attack

● But also from another process with an equivalent loop on the same
address, since predictors are indexed by virtual addresses

PHT - Bounds Check Bypass

Attacker context

0x1000: *rdx = 0xdeadbeef

0x1001: while(true)

0x1002: call [rdx]

BTB - Branch Target Injection

Victim context

0x1002: call [rdx]

 spectre gadget

0xdeadbeef: A = rdi[*rsi];

● Attacker also controls rdi and rsi in the victim context

● Use rsi to read victim memory, and rdi as an oracle buffer for covert

channel

Attacker context

0xdeadbeee: rdx = 0xdeadbeef

0xdeadbeef: call rdx

RSB - Return Stack Buffer

Victim context

0x1002: ret

 spectre gadget

0xdeadbeef: A = rdi[*rsi];

● Attacker also controls rdi and rsi in the victim context

● Use rsi to read victim memory, and rdi as an oracle buffer for covert

channel

STL - Speculative Store Bypass

● The victim may inadvertently, leak the value that was in memory at [rax]

● Difficult to exploit

Victim context

mov byte [rax], 0xff

movzx r8, byte [rcx]

mov rcx,[rdx + r8*4096]

Thank you!

Questions?

