
The ROP Needle:
Hiding Trigger-based Injection Vectors via Code Reuse

Pietro Borrello, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu

Sapienza University of Rome

borrello.1647357@studenti.uniroma1.it

{coppa,delia,demetres}@diag.uniroma1.it

ABSTRACT
In recent years, researchers have come up with proof of concepts

of seemingly benign applications such as InstaStock and Jekyll that

remain dormant until triggered by an attacker-crafted condition,

which activates a malicious behavior, eluding code review and

signing mechanisms. In this paper, we make a step forward by

describing a stealthy injection vector design approach based on

Return Oriented Programming (ROP) code reuse that provides two

main novel features: 1) the ability to defer the specification of the

malicious behavior until the attack is struck, allowing fine-grained

targeting of the malware and reuse of the same infection vector

for delivering multiple payloads over time; 2) the ability to conceal

the ROP chain that specifies the malicious behavior to an analyst

by using encryption. We argue that such an infection vector might

be a dangerous weapon in the hands of advanced persistent threat

actors. As an additional contribution, we report on a preliminary

experimental investigation that seems to suggest that ROP-encoded

malicious payloads are likely to pass unnoticed by current security

solutions, making ROP an effective malware design ingredient.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; Oper-
ating systems security; Intrusion detection systems.

KEYWORDS
Malware, APT, code reuse, ROP, antivirus

ACM Reference Format:
Pietro Borrello, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu.

2019. The ROP Needle: Hiding Trigger-based Injection Vectors via Code

Reuse. In The 34th ACM/SIGAPP Symposium on Applied Computing (SAC
’19), April 8–12, 2019, Limassol, Cyprus. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3297280.3297472

1 INTRODUCTION
Advanced Persistent Threats (APTs) are continuous, stealthy cyber

attacks perpetrated by financially or politically motivated coor-

dinated groups against specific private organizations or nations.

In order for an APT campaign to be successful, a high degree of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SAC ’19, April 8–12, 2019, Limassol, Cyprus
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5933-7/19/04. . . $15.00

https://doi.org/10.1145/3297280.3297472

covertness must be maintained over time: APT actors possess the

technical sophistication to craft malware that can avoid detection

by antivirus products (AVs), perform reconnaissance activities, and

eventually exfiltrate sensitive data, trying to remain undetected for

as long as possible. Similar stealthiness requirements are shared

with Remote Access Trojans (RATs)—another kind of cyber men-

ace where many machines are compromised to permit an intruder

to take control of them, and eventually have them to work in a

symphonic effort to carry out malicious actions on their behalf.

Both classes of attacks typically require an injection vector to

compromise a machine and possibly spread to others. Depending

on the scenario, an infection may be carried out with or without

an unaware user taking an active role in the process: consider, for

instance, spear phishing and social engineering attacks, infected

physical drives for air gapped systems, or zero-day network proto-

col vulnerabilities for infection spreading.

After the initial intrusion, the malware may or may not establish

a backdoor into the network, obtain user credentials, install appar-

ently legit software components, and perform data exfiltration or

lateral movement. For an effective APT campaign to work, attackers

should be able to evade antivirus and intrusion detection systems,

as well as other security best practices, and deceive incident re-

sponders. Attack vectors used in current APT approaches, however,

may still be countered using thorough forensic analysis aimed at

pinpointing the root cause of the infection, which may lie for in-

stance in a document attached to a spear phishing email. AVs might

also have caught up on the infection vector ever since, providing

signatures or better detections that can promptly identify similar

documents as malicious also outside the context of the attack.

Contributions. This paper aims to explore novel offensive tech-

nologies for APT scenarios by studying how code reuse techniques

could be used to build injection vectors that are by design less prone
to signature- or behavioral-based detections by antivirus products.

We show how to design vectors that can stay undetected longer,

and possibly be reused for different targets over time. As a key

idea, we decouple the infection vector from the code that actually

performs the injection, which is hidden by means of encryption

and code reuse techniques such as Return Oriented Programming

(ROP) [36]. We thus yield components that look clean to an analysis

system or a human analyst when taken separately. The application

is meant to act benignly the whole time, and strike only when the

attacker is able to feed it with the right input.

Previous research in the context of iOS devices has explored

the idea of building Jekyll apps [42] that yield malicious behaviors

that are absent in the application that undergoes code reviewing

and signing. This is achieved by embedding in a benign application

backdoors that are triggered over an encrypted communicationwith

https://doi.org/10.1145/3297280.3297472
https://doi.org/10.1145/3297280.3297472

SAC ’19, April 8–12, 2019, Limassol, Cyprus P. Borrello et al.

a remote server. The ideas presented in this paper improve over

Jekyll’s approach in a number of ways. In particular, our proposal:

• addresses the significantly more complex defenses adopted

by modern mainstream environments such as Windows;

• does not rely on an active remote counterpart, hence avoid-

ing suspect network traffic that could be detected;

• does not require relying on the IP addresses of the intended

victims for targeting purposes.

We argue that code reuse techniques are better suited to APT scenar-

ios than unpacking or shellcode injection. In fact, such techniques

raise an alert for behavioral detection due to their calls APIs for

memory allocation and protection; furthermore, AV vendors con-

tinuously generate signatures for them. Preliminary experimental

results, discussed in Section 5, seem to suggest that current AVs are

instead not quite watchful in the face of ROP sequences.

2 RETURN ORIENTED PROGRAMMING
This section briefly describes ReturnOriented Programming, putting

it into the technical perspective in which it was incubated.

Memory corruption bugs for memory unsafe languages are one

of the oldest problems in software security [38]. Historically, at-

tackers have exploited buffer overflows caused by coding errors to

inject their own code into the application and have the instruction

pointer jump to it. OS designers reacted by deploying system-level

mechanisms such as Data Execution Prevention (DEP) that extend

memory management facilities to prevent code execution from

writable pages, unless the programmer decides differently for some

pages (think, e.g., of just-in-time compilers).

Attackers thus turned their attention to reuse code that is already

present elsewhere in the program. Such code can be seen as entire

functions, as in return-into-libc attacks [28], or as short instruction

sequences that can be chained together to carry out complex tasks.

The most famous embodiment of the latter approach is Return Ori-

ented Programming (ROP). In a seminal paper [36] Shacham shows

how to use the stack pointer as an instruction pointer: by arranging

the addresses of the code sequences to be executed (dubbed gadgets)
on the stack along with their operands as part of a ROP chain, the
ret instruction present at the end of each gadget instructs the CPU

to follow the flow entailed by the chain itself. ROP chains can be

used in buffer overflow attacks to perform remote code execution

without violating a DEP policy in place.

3 OVERVIEW
In this section we describe a possible deployment scenario that

motivates our approach, and the design goals behind it. We discuss

the defensive capabilities that a victim might possess, and present

the main conceptual steps behind our approach. Section 4 will

address several trade-offs in the implementation of our approach.

3.1 Adversarial Model
Our infection vector might undergo a number of inspections once

it reaches the target victim. In the adversarial model that we con-

sider, the defenses may be deployed at different architecture levels:

the local machine where our injection vector gets installed, the

organization network where the victim machine is connected, and

Mitigation Description Discussion

Mandatory Randomization of the Section 3: Detonator

ASLR image address base

StackPivot Ensures that the stack has not Section 3: Detonator

been redirected for sensitive APIs

CallerCheck Ensures that sensitive APIs are Section 3: ROP Gadgets

invoked by legitimate callers

SymExec Ensures that calls to sensitive APIs Section 3: ROP Gadgets

return to legitimate callers

Table 1: Code reuse defenses in Microsoft Windows 10 (ex-
cerpted from [26]) that may hinder our approach.

the cloud service provided by a security vendor where an organi-

zation might send untrusted or suspicious executables for deeper

inspection. We review the main mitigations at these three levels

that could hinder the effectiveness of our approach.

Local. As a first level of protection, most modern operating sys-

tems implement a series of defenses against malicious behaviors.

As discussed in Section 2, DEP is one of the first mechanism devised

by OS designers to hinder code injection by denying code execution

from writable regions. One approach often used by attackers to

circumvent the constraints imposed by DEP is to rely on code reuse

techniques. These make use of existing code within an application

and thus do not have to inject additional code at run time. To limit

such kinds of attacks, one widely adopted mitigation is Address

Space Layout Randomization (ASLR) [29]: by randomly arranging

the address space positions of key areas of a process, ASLR makes it

hard for an attacker to identify gadget addresses. Tomake our adver-

sarial model stronger (and unlike the default behavior of Microsoft

Windows where image base address randomization is an opt-in

feature), we assume that ASLR is enforced on every binary executed

by the system
1
. Since ASLR may be bypassed by an attacker by

leaking at runtime gadget addresses, Microsoft Windows integrates

additional advanced mitigations that can make code reuse attacks

ineffective. Table 1 provides a summary of those mitigations that

may affect our approach, while we refer the reader to [26] for an

exhaustive list of the defenses implemented in Microsoft Windows

10. Mitigations not considered in Table 1 are designed for protecting

legit applications that are exploited through the use of heap vul-

nerabilities, exception chain hijacking, loading of untrusted code,

as well as other techniques that our approach does not adopt. Ad-

ditionally, we do not consider mitigations that require compiler

assistance, such as Control Flow Integrity2 (CFI), since an attacker

may freely opt-out when building the application.

Another defense component that is often deployed on local ma-

chines is an antivirus solution. Although AVs are closed-source

commercial solutions, we can often learn about their internals

through patents and press releases [7]. AV vendors typically com-

bine different detection techniques in their products, which we can

be categorized as follows. Signature-based detection has historically

been used to look for static code patterns that are known to be

found in malware: a database of unique flags of known threats is

updated over time, and if one of them is found in some portion

of the file, the AV deems the file malicious. When an exact file

1
In Windows terminology, this behavior is called mandatory ASLR. Applications not
compiled with /DYNAMICBASE may crash when launched and thus look suspicious.

2Control Flow Guard is the CFI implementation supported by Microsoft. Recent

works [6, 11, 17] show that it can be bypassed by attackers, especially when cooperation

occurs from the application side.

The ROP Needle: Hiding Trigger-based Injection Vectors via Code Reuse SAC ’19, April 8–12, 2019, Limassol, Cyprus

signature match is not found, the AV typically resorts to heuristic
detection by examining the file for suspicious characteristics. The

inspection can take place statically, by having the AV predict the

code sequences that the CPU may follow, or dynamically, by letting

the initial portion of the execution take place inside a safely emu-

lated environment, e.g., a CPU emulator with stubs for Windows

APIs. Heuristics can expose new threats that are variants of known

patterns; however, flagging an activity as suspicious is a matter

of interpretation, thus threshold-based mechanisms are used. If a

file is deemed clean by heuristic detection as well, the executable

is eligible to start running. When a user actually launches it, the

AV can immediately examine the execution looking for suspicious

activities for some time, and repeat such task periodically as the

program runs. This process is frequently referred to as behavioral
detection and requires integration with the operating system, for

instance by means of a Windows driver.

To complement and extend the task performed by an AV, a local

agent of an endpoint protection system may be placed into the local

machine. This component closely monitors the behavior of the sys-

tem, blocking or sandboxing untrusted applications, and collecting

interesting events or data that may be sent to the endpoint pro-

tection system server, allowing an organization to perform further

analysis and cyber threat intelligence.

Organization. To protect an organization from internal and ex-

ternal attacks, it is common to analyze the traffic within the local

network in order to detect and possibly react to ongoing threats.

Besides checking the traffic against well-known malicious patterns,

our adversarial model assumes that the analyzer is able to perform

advanced inspections against shellcodes [31] and sequences that

may resemble code reuse attacks [19]. Additionally, the organiza-

tionmay been able to intercept and analyze even encrypted network

traffic: several commercial solutions [34] nowadays are able to an-

alyze encrypted traffic, such as SSL connections, in real time by

deploying interceptors within the local network. An additional

level of protection can be provided by an endpoint protection sys-

tem. Differently to other components that evaluate a threat based

only on the behavior and actions of a single machine, an endpoint

protection system is designed to reason also on the behavior of

multiple machines within the same network, aiming at detecting

even attacks with complex dynamics. This is achieved by deploying

agents on the local machines that gather any suspicious data and

send them to a centralized server, where sophisticated analyses,

often based on machine-learning techniques [9], detect ongoing

threats. Network traffic and data collected on local machines may

be stored safely by an organization, possibly allowing subsequent

forensic investigation in case of cyber incidents.

Cloud. When an application is not deemed malicious by one of

the security components within an organization but still raises a

suspicion
3
, the corresponding executable may be sent by an AV or

an endpoint protection system to the security vendor for further

inspection. Vendors have a larger amount of resources and tools

than a client machine. For instance, the executable might be run in

a sandbox equipped with monitoring tools (e.g., based on virtual

machine introspection) for some amount of time. Additionally, it

3
Organizations may adopt a default-deny policy, where any application that is not

whitelisted is deemed as suspicious.

might undergo closer inspection by a security analyst, which can

resort to state-of-the-art techniques against anti-analysis features of

malware: for instance, we assume they can use symbolic execution,

which is perceived as the most effective analysis over obfuscated

code [5] and has recently been used for RAT dissection in [3].

One crucial consideration about cloud-based security solutions

is related to privacy concerns. Organizations, as the ones often

targeted by APTs, cannot allow security components to leak sensi-

tive data outside the organization boundaries. For this reason, our

adversarial model assumes that only executables may be sent to a

security vendor for further inspection, while sensitive data, such as

documents, are only analyzed locally. This assumption reflects the

policy adopted by several endpoint protection systems (e.g., [9]).

3.2 Goals
Scenario. Our approach aims at providing an injection vector to

attackers willing to take control of a system gradually over time,

possibly covering their trail with respect to the initial infection

mechanism. The attacker has the skills to deliver, by means of

our vector, a payload that is not conspicuous against the defenses

installed on the target, which may be represented by AVs, firewalls,

and endpoint protection as well. The infection vector can reach also

other users that are not meant as a target: for such users the vector

will do no harm, as a special triggering input must be supplied.

Unlike classic crimeware where an infection takes place and

runs out not long after the vector is spread, the attacker here is

unwilling to take the risk of having its infection vector detected

and eventually fingerprinted by AVs, as this would prevent further

(re)use of the weapon. We believe this scenario might be of interest

for APT actors, who possess the technical skills and the time span

needed to carry out such an attack, as well as for writers of complex

RATs that have a strong financial motivation.

Design Goals. We pursue the following main objectives in the

design of our approach:

• Behave like a benign application. The infection vector could

ideally hide in plain sight as part of a software component

that an unaware user or an organization would download

and use for legitimate purposes. This application should

continue to behave as benign even in the crucial moment

when the infection is carried out.

• Look like a benign application. The infection vector should

not only behave as a benign application, but also appear
as such when analyzed even by a human analyst or any

advanced automatic analysis technique. Additionally, data

processed by the application which will possibly activate

the infection should not raise any suspicion when inspected

using automatic tools. For these reasons, the infection vector

should be made of two components that look clean to an

analysis system or human analyst when taken separately,

raising the bar for forensic analysis, which has to reproduce

the interaction between the two components in order to

figure out how the attack took place.

• Avoid detection and fingerprinting. Even when activated, the

infection vector should be transparent to mainstream OS

defenses for code injection and code reuse attacks, antivirus

products, and network monitoring systems. To this aim, we

SAC ’19, April 8–12, 2019, Limassol, Cyprus P. Borrello et al.

take into account a number of defenses that might be in place

when the infection vector becomes active. We also want to

hinder fingerprinting techniques that could prevent later

activations (also on a different target) as a consequence of

the defenses being updated: consider, for instance, a network

protocol vulnerability that is eventually patched by a vendor.

• Allow targeted attacks. Attacks carried out during APT cam-

paigns target specific organizations. As the infection vector

may reach in principle also a large audience, it should allow

attackers to restrict the infection to intended victims only.

Additionally, the vector should not constrain the kind of

payload that our weapon can carry: we wish to support the

encoding of arbitrary code sequences.

• Reusability. The same vector can be reused to attack differ-

ent organizations over time, provided it gained sufficient

popularity to be used in their systems.

• Channel-agnostic. The targeted victim that runs the infection

vectormay be allowed to communicate onlywith the internal

network, or be completely air-gapped. This may happen

when the useful application containing the injection vector

is installed on an isolated machine. Our design should not

depend on the availability of an Internet connection but

instead allow an attacker to strike targets whenever any

kind of communication channel, even an unconventional

one, may be established with them. For instance, an attacker

may reach a victim through the help of unaware users that

unadvertently propagate the activation input to the isolated

machine via physical access
4
.

3.3 Approach
We now provide the reader with a high-level view of our approach.

We aim at disguising an injection vector as a benign application,

which originates from an existing software and is extended with

useful features. We rely on ROP to encode a malicious payload

that, when the right input is received, is eventually triggered by a

detonator component hidden in the normal application logic.

Workflow. Conceptually, we identify five steps in the process:

[S1] Pick an existing benign application and extend it with extra
features. We start from an existing program that might be

of interest for the victim once we augment it with useful

features that make it appealing to them, e.g., by meeting their

needs. Such features rely to some extent on an open source

component that we add to the program and that we later use

as a source of ROP gadgets. We argue that if the application

is benign on its own, it is likely to stay undetected longer.

Ideally, the application may even be trusted enough by the

organization to be whitelisted. Otherwise, we expect that

the application may be initially sandboxed or temporarily

blocked, but then, after a thorough remote inspection from

the security vendor, it may be allowed to execute within an

organization [9].

[S2] Encode the malicious behavior as ROP chain. We rely on code

reuse, namely ROP, to encode malicious flows. Compared to

unpackers and shellcode injectors, the actions required to

4
The Stuxnet worm—used to sabotage Iranian nuclear facilities—reached its victims

via infected USB flash drives, thereby crossing any air gap.

trigger a ROP chain are more stealthy in the face of AVs: we

do not need to make conspicuous API calls that disable Data

Execution Prevention (DEP) for a page, nor to deploy un-

packing sequences that might be amenable to fingerprinting

or heuristic-based detection.

[S3] Hide the detonator in plain sight. In the process of extending

the program, we intersperse a detonator component in the

application’s normal processing logic. When a document is

opened in the program, the detonator performs an input-

dependent ROP chain decoding, and looks for an activation

key in the input to determine whether a valid chain has been

extracted. The extraction is done also for benign inputs: the

decoded sequence is simply meaningless in such cases.

[S4] Spread the extended application. The attacker can resort to a

number of strategies (e.g., social engineering, spear phishing)

to inform the victim of the availability of a new application.

Depending on the scenario, an attackermightwant also other

people to download it: this might be necessary to build a rep-

utation for the program, and might also turn out convenient

(especially for RATs) if the attacker decides to perpetrate the

same attack against other victims in the future.

[S5] Strike by spreading the triggering input. A pivotal element of

our approach is the decoupling between the infection vector

and the triggering sequence. The attacker might repeat the

strategy from S4 or resort to other channels to prompt the

victim to open a document that triggers the infection. This

step may possibly take place much later in time than S4. Also,

if an open document format is used it is crucial that other

viewers or analyzers for that format are not tipped off by it.

Implementation Strategies. To deploy such an approach, a key

factor is the placement of the ROP chain. We identify two possible

strategies, which we depict in Figure 1:

(1) The ROP chain is embedded in the application itself: the deto-
nator extracts a key from the input and uses it for the chain

decoding process. Eventually, the decoded chain is checked

against a validation key used to determine if the extracted

sequence is the intended ROP chain (i.e., the input document

was crafted by the attacker) or it should be ignored.

(2) The ROP chain is shipped as part of the document: the detona-
tor extracts the chain from the document using a steganog-

raphy decoding algorithm. Note that if the document format

is not an open one, but has rather been created by the at-

tacker as part of the augmented application functionality, an

arbitrary extraction sequence can be used. Eventually, the

decoded chain is checked against a validation key as in (1).

In Section 4 we will discuss the rationale behind the proposed

strategies and address other design choices underlying the five

main steps of our injection vector approach.

4 DESIGN CHOICES
Target Application Definition. As mentioned in Section 3.2, an

injection vector that behaves and looks like as a benign application

is a key element in our approach. A first question to be asked is

whether extending a benign application, rather than simply poison-

ing it, yields any benefits. In the late summer of 2017 the supply

chain of a popular utility, CCleaner, was compromised by attackers

The ROP Needle: Hiding Trigger-based Injection Vectors via Code Reuse SAC ’19, April 8–12, 2019, Limassol, Cyprus

(a)

Triggering input

Steganographed

Validation key Decryption key

Executable file

Encrypted ROP chain Detonator

data/resources text/libs

libraries

ROP gadgets
Decryption lib.

(b)

Triggering input

Steganographed

Validation key ROP chain

Executable file

Detonator

text/libs

libraries

ROP gadgets

Figure 1: Implementation strategies: ROP chain embedded in (a) the executable file or (b) the input.

that were able to spread poisoned versions of the tool with a valid

digital signature. The executables contained a malicious payload

featuring a domain generation algorithm and a command and con-

trol functionality, which were detected shortly after by security

firms. Although the attack could potentially reach a very large user

base, the way the payload was appended to the application looked

conspicuous in the face of advanced exploit detection technologies
5
.

We argue that extending an existing application with additional

features, albeit a more laborious task in principle, may give a lot

more leeway in concealing the detonation sequence, since code

modifications and additions are needed to support them. Also, it

may provide more incentive to the victim for its download, espe-

cially when the extra features aim at meeting their needs.

A second question concerns instead the nature of the applica-

tion to modify. An ideal candidate is an application that performs

encoding/decoding operations (even better when of cryptographic

nature) or heavy-duty input transformations as part of the natural

behavior, which may encompass, for instance, compression, format

conversion, media reproduction or visualization, secure communi-

cations, and so on. The enhancements may or may not extend the

range of input file formats supported by the application: if so, an

additional format may offer further opportunities in the design of

an attack-triggering input, as well as in the choice of the concealing

strategy for the ROP chain.

ROP Gadgets. In our approach, the implementation of extra

functionalities in the application relies—at least to some extent—on

an open source library that is added to the binary. Although the

application might in principle already contain sufficient gadgets to

encode arbitrary ROP programs, a library offers more possibilities

in terms of gadget variety and quality. For instance, an application

might legitimately invoke only a subset of the functions of a library,

and rely on otherwise unused functions as additional sources of

gadgets: adding junk code to the application itself to provide extra

gadgets would look indeed more suspicious.

The choice of using an open source library is motivated by a

number of practical factors. First of all, an official signed version

is not necessary: the same library may be compiled in different

projects with different compilers, so having multiple versions in

principle should not arouse any suspicion. From the point of view

of an adversarial system, an AV signature for a popular library used

in a possibly malicious context should be written very carefully,

otherwise the AV could potentially disrupt the normal functioning

of many legit applications.

5
https://blog.talosintelligence.com/2017/09/avast-distributes-malware.html.

The availability of its source code offers indeed a simpler way

for adding gadgets on demand when compared to closed-source

libraries, especially when they belong to Windows itself. More

importantly, static library linking is a common practice in the Win-

dows realm (e.g., for the sake of compatibility, or to build a portable

version of a program), and helps us dodge ASLR using a simple yet

effective mechanism within the detonator that we will discuss later

on in this section.

The ability to add gadgets on demand is crucial also to bypass

two other code reuse mitigations that are shipped with the latest

releases of Microsoft Windows. Namely, CallerCheck and SymExec
aim at detecting whether a sensible API has been invoked through

a ROP chain. The former checks how a sensible API has been called

inside the application binary, while the latter checks what happens

when the sensible API returns the control to the application code.

In more detail, CallerCheck inspects the return address present on

the stack when a sensible API is executed. If such address does not

point immediately after a code location containing a call or jump
instruction, then the mitigation raises an alert. Additionally, if the

preceding instruction is an indirect control transfer, CallerCheck

verifies whether the involved register is consistent with the API

address, as the chain could have faked the return address on the

stack. To bypass CallerCheck, a ROP chain generated by the attacker

has to use gadgets that naturally present a call to a sensitive API

or resort to call-preceded gadgets [27], i.e., gadgets that contain
indirect call instructions where the involved register can be easily

controlled by the attacker.

SymExec verifies instead that calls to sensitive APIs return to

legitimate callers. This is achieved when returning from the API

by simulating up to a fixed number of instructions (15 by default)

to determine whether the execution is returning control to a ROP

chain. To bypass this defense, there are different effective strate-

gies. One natural approach is to craft the chain such that when a

sensible API is invoked, the execution is returned to apparently

legitimate code sequences of the application that are long enough

to mislead the simulation [36]. Another strategy could be to exploit

the inaccuracy in the simulation engine. In particular, it has been

shown that SymExec stops its simulation whenever a conditional

jump or indirect call is met [27]. This happens because SymExec

does not track register values precisely.

Albeit CallerCheck and SymExec pose severe constraints to ex-

ploit writers
6
, they may easily be bypassed when the attacker is

free to craft ROP gadgets within an application. Since our approach

6
CallerCheck and SymExec are currently configurable only for 32-bit applications.

https://blog.talosintelligence.com/2017/09/avast-distributes-malware.html

SAC ’19, April 8–12, 2019, Limassol, Cyprus P. Borrello et al.

void patch(LONG_PTR *chain,

unsigned len) {

for (unsigned i = 0;

i < len / sizeof(LONG_PTR);

i++)

if (chain[i] < 0)

chain[i] = chain[i] + &MARK;

}

Figure 2: A possible implementation of the online patching
mechanism performed by the detonator to make the ROP
chain work in the presence of ASLR. LONG_PTR is a Windows
signed data type used to represent native pointers.

builds on top of the idea of a benign application that integrates a

large and complex library, the attacker should been able to dissemi-

nate the required gadgets without raising any suspicion.

Detonator. The detonator component is pivotal to our strategy:

its activities include retrieving the validation key and—depending

on the implementation strategy—the decryption key or the ROP

chain from the input document, decoding the payload, checking

whether it yields a valid ROP chain using the activation key, and if

so transferring at some point the control to the extracted chain.

For the control transfer to take place, the detonator must first

patch the chain to make it actually executable. Indeed, since ASLR

could be enforced by the system (Section 3.1), the attacker cannot

determine beforehand the gadget addresses. However, the ASLR im-

plementation available in Microsoft Windows only randomizes the

base address where the image containing the text and data sections

of an application is loaded. Hence, the relative distance between the

base address and any code gadget, function or data symbol is not

affected by the randomization performed by the OS. The attacker

can thus exploit this invariant and locally generate a ROP chain

where gadget addresses are computed as offsets with respect to one

specific function or data symbol. The address of this symbol will

be determined by Windows when loading the binary, allowing the

detonator to exploit it for computing the correct gadget addresses.

Figure 2 shows one possible implementation of the online patching

mechanism that could be integrated into the detonator. Albeit more

sophisticated implementations could be devised, we remark that

this mechanism should resemble common operations performed by

benign applications in order to avoid to raise any suspicious and

making hard for an AV vendor to define an ad-hoc signature. In our

proposal, the patch function takes as input the runtime location of

the ROP chain and the chain length
7
. Since a chain is composed of

data operands and gadget addresses, the detonator must distinguish

between these two types and patch only the latter. To this end, the

attacker builds the chain by using only non-negative data operands

and by computing the gadget offsets with respect to a symbol MARK
that is placed for instance at the end of the data section. Since the

data section is loaded by the Windows loader immediately after the

text section
8
, the chain contains gadget offsets which are always

negative numbers. Function patch can thus exploit this property

and conditionally patch elements of the chain that contain nega-

tive numbers, summing to them the address of the MARK symbol to

7
When the chain length is not known a priori, this information must be encoded

within the triggering input.

8
Unless position-independent code is used, relative position and distance between text

and data sections are chosen by the compiler and cannot be altered by the loader.

recover the run-time addresses of the gadgets. To overcome the lim-

itation on using only non-negative data operands, the attacker can

resort to code gadgets that dynamically build negative constants

by arbitrarily composing positive numbers (e.g., using a gadget im-

plementing a subtract operation). Although this may seem a severe

disadvantage, the ROP practice faces similar restrictions (e.g., only

bytes representing printable characters may be used in the chain).

Besides ASLR, another mitigation that may affect the execution

of the ROP chain is StackPivot. The main idea behind this defense is

to detect whether the stack pointer has been diverted to a memory

region different from the expected one whenever a sensible API is

executed by the application. To avoid this kind of alert, the detonator

should place the ROP chain in the stack before transferring the

control to it. If the ROP chain exceeds the size of the stack, then the

attacker should implement a multi-stage mechanism using ROP to

gradually copy slices of the chain into the stack [41].

In the implementation design space, one may choose to place the

detonator in the main application or in the library. We believe the

first scenario allows in general for a better blending of the detonator

logic within the application logic. On the other hand, a detonator

is likely to be overlooked during a preliminary inspection when

placed inside a library that has many exports.

The control flow hijacking step in the activation sequence might

in principle be concealed also as a vulnerability that the attacker

plants in the code. This idea has been explored in previous research

in tandem with another vulnerability that leaks memory layout

information to a remote active counterpart [42].

Finally, the detonator should provide means for the ROP chain

to terminate gracefully, thus resuming the normal benign behavior

intended for the application.

ROP Chain Placement. The two scenarios of Figure 1 allow for a

variety of trade-offs in the design space.

The main advantage of embedding the ROP chain in the exe-

cutable file is that the size of the triggering input is kept small. A

downside, however, is that the malicious code is chosen beforehand

by the attacker. Furthermore, the decryption algorithm embedded

in the target application could look suspicious to an analyst, unless

it is part of the application’s normal stream of activities.

Conversely, embedding the ROP chain in the triggering input

allows an attacker to defer the specification of the malicious behav-

ior until the attack is struck, possibly customizing it based on the

victim’s peculiarities. Also, the same infection vector may also be

reused for delivering multiple payloads over time. The main disad-

vantage is that the size of the input may grow larger, especially if

the ROP chain is concealed with steganographic techniques, which

need statistical properties that ought to be preserved.

ROP Chain Concealing. If the ROP chain is embedded in the

executable file, it has to be kept hidden to an analyst, countering

any reconnaissance techniques they may adopt to discover it as it is

loaded in memory [37]. A natural approach is to store an encrypted

version of the ROP chain in some data or resource section, keeping

the decryption key separated from the executable file by embedding

it in the input. Since triggering inputs are not released until the

attack strikes, an analyst can only explore the application with legit

inputs to determine its potential dangerousness. Hence, decryption

is most likely performed with the wrong key, yielding arbitrary

The ROP Needle: Hiding Trigger-based Injection Vectors via Code Reuse SAC ’19, April 8–12, 2019, Limassol, Cyprus

bytes that do not resemble a valid ROP chain while the intended

malicious payload is not given away.

If the ROP chain is stored in the triggering input, different scenar-

ios may take place: the simplest setting arises when the input has

a custom format designed by the attacker. As previously pointed

out, this yields plenty of opportunities to conceal the ROP chain

along with the input data. Conversely, embedding a chain within

a standard format may require steganography techniques, as we

elaborate in Section 6. A downside is that the presence of stegano-

graphic code in the application may tip off an analyst, unless it is

properly blended along with the application’s logic.

Key Placement. As we have observed before, if the (encrypted)

ROP chain is embedded in the executable file, it is natural to keep

the decryption key in the input.

Regardless of where the ROP chain is stored, the validation key
may be kept either in the executable file or in the triggering input.

We advocate the latter choice as the lack of information on the

validation key, released only when the attack strikes, makes it

more difficult for an analyst to reverse-engineer the malicious code,

even using automated techniques such as symbolic execution [4].

Furthermore, the effects in terms of file size from embedding a key

in a triggering input are likely to be negligible.

We note that, depending on the input format, both the validation

key and the decryption key may be embedded in the input without

needing steganography, e.g., by exploiting unused padding bytes.

5 PRELIMINARY ASSESSMENT
To assess the feasibility of our architecture, we conducted a prelim-

inary investigation aiming at exploring whether mainstream OS

protection mechanisms, in combination with current AV defenses,

are equipped to deal with payloads encoded as ROP sequences.

Test Suite. We manually encoded a number of 32-bit ROP pro-

grams
9
that implement the online patching mechanism presented

in Section 4 and carry out benign actions, either depending on

an external input or in any possible execution. Such programs are

made of mathematical operations, conditional branches, and calls to

Windows API functions; we used the zlib compression library as

source of gadgets. Our primary interest was to determine whether

the means by which execution is carried out (i.e., ROP) is suspicious

for the defenses in place, rather than in the nature of such actions:

indeed, our goal is to provide an infection vector, leaving to the

ability of the attacker the task of encoding actions in the malicious

code that do not prompt the AV to intervene.

ROP vs. OS Defenses. We tested modern OS defenses against

code reuse using the March 2018 cumulative update of Windows

10. Such defenses may apply at system and app-level [26]. System-

level defenses do not affect the execution of our ROP programs:

this was expected, as we do not interfere with aspects such as DEP

or heap corruption. On the other hand, app-level defenses should

be selectively enabled for each installed application: some can be

configured for 32-bit applications only, while others may disable

functionalities such as child process creation or DLL injection. As

discussed throughout the paper, three app-level defenses are partic-

ularly relevant to our approach: CallerCheck and SymExec, which

9
Some of the ROP mitigations shipped with Windows are configurable only for 32-bit

binaries. We performed the same tests also on 64-bit binaries.

validate API calls, and StackPivot, which detects stack redirections

at API-call time. Our programs were able to bypass these mitiga-

tions without raising any alerts. Compared to exploitation attacks

that leverage memory vulnerabilities, our scenario is indeed quite

different: the application cooperates in the deployment of the chain,

and we have more freedom in the choice of gadgets.

ROP vs. AV Defenses. We then submitted our programs to Virus-

Total and they were marked as clean by all the 67 engines available

to date. Since VirusTotal may not run all the heavyweight inspec-

tion features offered by AV engines, we decided to perform an

additional experiment by creating three Windows 10 environments

equipped with AVG Antivirus, Avira Antivirus, and KasperskyLab

EndPoint Security, respectively. Running our programs did not raise

any alerts from these solutions. Although the details of each product

are undisclosed, our experiments suggest that—unlike unpacking

and shellcode injection—execution patterns typical of ROP did not

trigger heuristic detections, which may resort to control flow pre-

diction, code emulation, or a combination of both (Section 3.1). As

the payloads from our programs do not perform malicious tasks

once activated, the absence of alerts seems to suggest that the ROP

execution patterns went unnoticed by behavioral analysis as well.

6 RELATEDWORK
Code Reuse Defenses. In the arms race between OS designers

and exploit writers, a number of defenses have been proposed

by security researchers during the last decade to counter code

reuse attacks. [40] divides these solutions into four main categories:

control-flow integrity [14, 39], information hiding [16, 43], pointer
integrity [23, 25], and re-randomization [22, 44].

A crucial aspect that should be taken into account when evaluat-

ing our technique against these countermeasures is the freedom for

the attacker to craft the application in a way that can make these

defenses ineffective. Indeed, most of the techniques either require

that the application be built using a specific compilation toolchain,

or implicitly assume that the application will not deliberately co-

operate at run time with the attacker. In other words, similarly to

previous works [42], our use of ROP is substantially different from

what most defensive techniques would expect, effectively under-

mining their assumptions on the adversarial model. For instance,

when the attacker can gain control of the stack several CFI imple-

mentations cannot protect a victim [10]. Even when considering

mainstream ROP mitigations shipped with the latest releases of

Microsoft Windows [26], recent works (e.g., [6, 11, 17]) show that

these countermeasures can be bypassed by an attacker, especially

when cooperation occurs on the application side.

A different kind of protection scheme is explored in recent re-

search that builds statistical models of the behavior of a program,

in order to detect deviations from usual patterns when a ROP attack

occurs. Such works often leverage hardware performance counters

to detect microarchitectural effects, and employ statical methods

to build behavioral profiles [12, 30]. We believe these techniques

could raise the bar for our approach; however, they have not been

integrated yet in mainstream systems.

Poisoned Applications. A fundamental concept behind this paper

is that an attacker is able to spread a malicious code on a victim’s

SAC ’19, April 8–12, 2019, Limassol, Cyprus P. Borrello et al.

machine thanks to an apparently innocent application. This strat-

egy has been already explored in the past. One anecdotal example

is related to InstaStock [20], an iOS application developed and re-

leased on the Apple Store by Charlie Miller in 2011. Although this

application appeared as an innocent stock ticker, it had functional-

ities for interacting with a remote server. During the mandatory

app review phase, these interactions were designed by Miller to

be innocent. In a later moment the remote server behavior was

altered, sending malicious code that was executed in the iOS device

exploiting a bug in the Javascript sandboxing component.

Two years later, Jekyll [42] made a step further by demonstrating

how to design iOS applications that could be remotely exploitable,

allowing an attacker to execute malicious behaviors by carefully

rearranging fragments of signed benign code. To bypass the ASLR

protection integrated in iOS, Jekill was designed to leak address

information to the remote attacker through a network communica-

tion. Using this information, the attacker could easily send back a

working code reuse attack and perform malicious activities. When

considering the design goals discussed in Section 3.2, Jekyll fails at

fulfilling several of them. First, the design behind Jekyll is strictly

based on a client-server paradigm, which is widely popular in ap-

plications targeting mobile devices, but this might not be the case

for targets of APT attacks. Victims may be connected to isolated

networks, impeding any incoming traffic from a remote server.

Even when the victims may be connected to the Internet, organi-

zations may still deploy restrictions on the connections, allowing

communications only with trusted IP addresses and thus cutting

out the remote server used by Jekyll. Second, even assuming that

the target victim can be reached by the attacker from the Internet,

the communication can raise suspicion and alert the organization

on the ongoing threat. Although Jekyll sends the code reuse at-

tack within an encrypted connection, modern security solutions

may be able to decrypt the traffic [34] and detect the code reuse

sequence [19]. Third, Jekyll can be configured to deliver exploits

only to the intended victims by reasoning on the IP addresses of the

incoming connections to the remote server. However, it is common

for organizations to place machines behind a NAT gateway that

hides the internal network address of the machines. In this scenario,

Jekyll is not able to target specific victims within an organization.

Although our approach does not provide immediate support for

targeting, its design makes it suitable for implementing different

targeting strategies (e.g., phishing emails). APT campaigns often

use targeting strategies that are tailored to their victims; providing

a general strategy to this end seems indeed difficult. Finally, Jekyll

has been designed for the iOS environment, where online defenses

for code reuse attacks were not deployed. This paper, in contrast,

discusses how to take into account the constraints imposed by

the most advanced mitigations for code reuse attacks currently

shipped in the latest Microsoft Windows releases, discussing how

to circumvent them when needed.

More recently, ROPInjector [32] proposed a technique for con-

cealing shellcodes inside a benign application. The key idea is to

translate the malicious code into a ROP chain and then append it at

the end of the code section. To prevent a monitoring system such

as an AV from easily detecting the chain’s execution, ROPInjector

executes it at the program’s exit. Three notable aspects differentiate

ROPInjector from our approach: (i) the malicious code is fixed and

cannot be remotely customized by an attacker, (ii) the ROP chain is

not protected and could be detected by AV heuristics, and (iii) the

ROP chain is always executed on the victim’s machine, i.e., there is

no triggering condition. Nonetheless, the experimental evaluation

in [32] highlights two interesting results that are relevant for this

paper: (i) AVs emulate only a limited portion of an application code

(likely due to time constraints), and (ii) a few elementary mutations

on the malicious code can elude AV analysis (at least temporarily)

even when considering well-known shellcodes.

Steganography. Steganography [33] is the practice of concealing

a piece of data within another piece of data. During the last few

decades, the interest for steganography has increased significantly.

At the same time, several practical countermeasures have been

proposed to detect the use of steganography and also to recon-

struct the hidden data from the stego medium. These techniques

are commonly referred as steganalyses. For an in-depth discussion

of modern steganalysis and steganography techniques we refer the

reader to [8, 15, 21], where several approaches and trade-offs are

discussed. In this paper, we do not impose any constraint on the

steganography technique or on the stego medium, leaving wide

room for an attacker to choose among the latest techniques that do

not raise alerts in the state-of-the-art steganalysis systems.

In our architecture, steganography is a means for hiding a ROP

chain within an application input. The idea of concealing malicious

code in the context of an application has already been explored

in previous research. [1] proposes a trigger-based malware whose

malicious code is split into fragments disseminated into the appli-

cation code via unaligned instructions. Compared to this approach,

the use of ROP makes our solution less conspicuous, reducing the

probability of detection. Moreover, our triggering condition is given

by a special input while [1] manually inserts triggering bugs that

transfer the control to the malicious code. Another interesting tech-

nique, proposed in the different context of code obfuscation, is

RopSteg [24], which translates code into a ROP chain that makes

use of unintended ROP gadgets present in the application code for

its execution. Following the approach behind [1] or [24] in our

setting would require choosing the malicious code embedded in the

attack vector beforehand, while our approach allows deferring the

specification of the malicious behavior until the attack is struck.

7 CONCLUSIONS
In this paper we have discussed a novel malware design approach

based on ROP code reuse techniques for turning a benign applica-

tion into an infection vector that remains dormant until triggered by

an attacker-crafted input. The key insight of using a ROP-based con-

cealing strategy over a conventional unpacking or shellcode-based

approach is that it is less prone to signature and emulation-based

detection from antivirus products, more stealthy against behavioral

detections, and harder to detect and inspect for malware analysts.

A main design goal of our architecture is the ability to support

the encoding of arbitrary code sequences. While previous research

has shown that even in the presence of advanced ROP defenses it is

possible to build realistic and Turing-complete gadget sets [6], one

missing element in the research landscape is a publicly available,

working ROP compiler that meets the needs of real-world attackers,

for which building ROP chains remains predominantly a manual

The ROP Needle: Hiding Trigger-based Injection Vectors via Code Reuse SAC ’19, April 8–12, 2019, Limassol, Cyprus

task [2, 13]. Conversely, in recent years we have witnessed an

increase in the complexity of ROP chains, which moved from being

short simple sequences that bypass DEP to inject some shellcode, to

very complex behaviors encoded entirely as ROP code [18]. While

this trend backs up the assumption that in our scenario a skilled

attacker may encode arbitrary behavior even manually, we believe

that the development of a full-fledged ROP compiler [35] would be

beneficial to the research community, shedding light on aspects of

the ROP writing practice that are sometimes overlooked.

Acknowledgements.We thank the anonymous WOOT and SAC

referees for their precious suggestions. This work is supported in

part by a grant of the Italian Presidency of the Council of Ministers.

REFERENCES
[1] Dennis Andriesse and Herbert Bos. 2014. Instruction-Level Steganography for

Covert Trigger-Based Malware. In Proc. of the 11th Conf. on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA’14). Springer-Verlag.

[2] Marco Angelini, Graziano Blasilli, Pietro Borrello, Emilio Coppa, Daniele Cono

D’Elia, Serena Ferracci, Simone Lenti, and Giuseppe Santucci. 2018. ROPMate:

Visually Assisting the Creation of ROP-based Exploits. In 2018 IEEE Symposium
on Visualization for Cyber Security (VizSec ’18).

[3] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, and Camil Demetrescu.

2017. Assisting Malware Analysis with Symbolic Execution: A Case Study. In

Proc. of the First Int. Conf. on Cyber Security Cryptography and Machine Learning
(CSCML ’17). Springer International Publishing.

[4] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and

Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACM Comput.
Surv. 51, 3, Article 50 (2018).

[5] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and Alexan-

der Pretschner. 2016. Code Obfuscation Against Symbolic Execution Attacks. In

Proc. of 32nd Conf. on Computer Security Applications (ACSAC ’16). 189–200.
[6] Andrea Biondo, Mauro Conti, and Daniele Lain. 2018. Back To The Epilogue:

Evading Control Flow Guard via Unaligned Targets. In 25th Annual Network and
Distributed System Security Symposium (NDSS ’18).

[7] Jeremy Blackthorne, Alexei Bulazel, Andrew Fasano, Patrick Biernat, and Bülent

Yener. 2016. AVLeak: Fingerprinting Antivirus Emulators through Black-Box

Testing. In 10th USENIX Workshop on Offensive Technologies (WOOT ’16).
[8] J. Anita Christaline, R. Ramesh, and D. Vaishali. 2015. Critical Review of Image

Steganalysis Techniques. Int. J. Adv. Intell. Paradigms 7, 3/4 (Dec. 2015), 368–381.
[9] Comodo. 2018. Advanced Endpoint Protection. https://enterprise.comodo.com/

whitepaper/AEPWhitePaper09292016.pdf?track=8996&af=7639.

[10] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro, C. Liebchen, M.

Qunaibit, and A.-R. Sadeghi. 2015. Losing Control: On the Effectiveness of

Control-Flow Integrity Under Stack Attacks. In Proc. 22nd ACMConf. on Computer
and Comm. Security (CCS ’15). 952–963.

[11] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. 2014.

Stitching the Gadgets: On the Ineffectiveness of Coarse-Grained Control-Flow

Integrity Protection. In 23rd USENIX Security Symposium. 401–416.

[12] Mohamed Elsabagh, Daniel Barbara, Dan Fleck, and Angelos Stavrou. 2017. De-

tecting ROP with Statistical Learning of Program Characteristics. In Proc. of 7th
ACM Conf. on Data and Appl. Security and Privacy (CODASPY’17). ACM, 219–226.

[13] Andreas Follner, Alexandre Bartel, Hui Peng, Yu-Chen Chang, Kyriakos Ispoglou,

Mathias Payer, and Eric Bodden. 2016. PSHAPE: Automatically Combining

Gadgets for Arbitrary Method Execution. In Security and Trust Management
(STM ’16). Springer International Publishing, 212–228.

[14] Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. GRIFFIN: Guarding Control

Flows Using Intel Processor Trace. In Proc. of the 22nd Int. Conf. on Architectural
Support for Progr. Languages and Operating Systems (ASPLOS ’17). 585–598.

[15] A. Girdhar and V. Kumar. 2018. Comprehensive survey of 3D image steganogra-

phy techniques. IET Image Processing 12, 1 (2018), 1–10.

[16] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. 2012. Enhanced

Operating System Security Through Efficient and Fine-grained Address Space

Randomization. In Proc. of the 21st USENIX Security Symposium. 475–490.

[17] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. 2014.

Out of Control: Overcoming Control-Flow Integrity. In Proc. 2014 IEEE Symp. on
Security and Privacy (SP ’14). 575–589.

[18] Mariano Graziano, Davide Balzarotti, and Alain Zidouemba. 2016. ROPMEMU:

A Framework for the Analysis of Complex Code-Reuse Attacks. In Proc. of 11th
Asia Conf. on Computer and Communications Security (ASIA CCS ’16). 47–58.

[19] Christopher Jämthagen, Linus Karlsson, Paul Stankovski, and Martin Hell. 2014.

eavesROP: Listening for ROP Payloads in Data Streams. In Information Security

(ISC ’04). Springer International Publishing, 413–424.
[20] John Brownlee. 2011. Apple’s iOS Javascript Browser Tweak Hacked To Al-

low Any App To Run Malicious Code. https://www.cultofmac.com/128552/

apples-ios-javascript-browser-tweak-hacked-to-allow-any-app-to-run

-malicious-code/.

[21] Debina Laishram and Themrichon Tuithung. 2015. A Survey on Digital Image

Steganography: Current Trends and Challenges. In Proc. of 3rd Int. Conf. on
Internet of Things and Connected Technologies (ICIoTCT ’15). SSRN.

[22] Kangjie Lu, Wenke Lee, Stefan Nürnberger, and Michael Backes. 2016. How to

Make ASLR Win the Clone Wars: Runtime Re-Randomization. In 23rd Annual
Network and Distributed System Security Symposium (NDSS ’16).

[23] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee. 2015. ASLR-Guard:

Stopping Address Space Leakage for Code Reuse Attacks. In Proc. of the 22Nd
ACM SIGSAC Conf. on Computer and Communications Security (CCS ’15). 280–291.

[24] Kangjie Lu, Siyang Xiong, and Debin Gao. 2014. RopSteg: Program Steganography

with Return Oriented Programming. In Proc. of the 4th ACM Conf. on Data and
Application Security and Privacy (CODASPY ’14). 265–272.

[25] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières. 2015. CCFI:

Cryptographically Enforced Control Flow Integrity. In Proc. of the 22Nd ACM
SIGSAC Conf. on Computer and Communications Security (CCS ’15). 941–951.

[26] Microsoft. 2017. Customize exploit protection. https://docs.microsoft.com/

en-us/windows/security/threat-protection/windows-defender-exploit-guard/

customize-exploit-protection.

[27] Z. L. Nemeth. 2015. Modern binary attacks and defences in the Windows envi-

ronment – Fighting against Microsoft EMET in seven rounds. In 2015 IEEE 13th
Int. Symp. on Intelligent Systems and Informatics (SYSY ’15). 275–280.

[28] Nergal. 2001. The advanced return-into-lib(c) exploits: PaX case study. http:

//hamsa.cs.northwestern.edu/media/readings/advanced_libc.pdf. Phrack Maga-

zine 58.

[29] PaX Team. 2016. Address Space Layout Randomization (ASLR). https://pax.

grsecurity.net/docs/aslr.txt.

[30] David Pfaff, Sebastian Hack, and Christian Hammer. 2015. Learning How to

Prevent Return-Oriented Programming Efficiently. In Engineering Secure Software
and Systems (ESSoS ’15). Springer International Publishing, 68–85.

[31] Michalis Polychronakis, Kostas G. Anagnostakis, and Evangelos P. Markatos.

2006. Network–Level Polymorphic Shellcode Detection Using Emulation. In

Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA ’06).
[32] Giorgos Poulios, Christoforos Ntantogian, and Christos Xenakis. 2015. ROPIn-

jector: Using Return Oriented Programming for Polymorphism and Antivirus

Evasion. Black Hat USA (2015).

[33] N. Provos and P. Honeyman. 2003. Hide and seek: an introduction to steganogra-

phy. IEEE Security Privacy 1, 3 (May 2003), 32–44.

[34] RSA. 2014. SSL Insight for RSA Security Analytics. https://community.rsa.com/

api/core/v3/contents/114532/data?v=1.

[35] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2011. Q: Exploit

Hardening Made Easy. In Proc. 20th USENIX Conf. on Security (SEC’11).
[36] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-

into-libc Without Function Calls (on the x86). In Proc. of the 14th ACM Conf. on
Computer and Communications Security (CCS ’07). ACM, 552–561.

[37] Blaine Stancill, Kevin Z. Snow, Nathan Otterness, Fabian Monrose, Lucas Davi,

and Ahmad-Reza Sadeghi. 2013. Check My Profile: Leveraging Static Analysis

for Fast and Accurate Detection of ROP Gadgets. In Proc. of 16th Int. Symp. on
Research in Attacks, Intrusions, and Defenses (RAID 2013). 62–81.

[38] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal

War in Memory. In Proc. 2013 IEEE Symp. on Security and Privacy (SP ’13). 48–62.
[39] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar

Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-

Flow Integrity in GCC & LLVM. In 23rd USENIX Security Symposium. 941–955.

[40] Victor van der Veen, Dennis Andriesse, Manolis Stamatogiannakis, Xi Chen,

Herbert Bos, and Cristiano Giuffrida. 2017. The Dynamics of Innocent Flesh on

the Bone: Code Reuse Ten Years Later. In Proc. of the 2017 ACM SIGSAC Conf. on
Computer and Communications Security (CCS ’17). 1675–1689.

[41] Sebastian Vogl, Jonas Pfoh, Thomas Kittel, and Claudia Eckert. 2014. Persistent

Data-only Malware: Function Hooks without Code. In 21st Annual Network and
Distributed System Security Symposium (NDSS ’14).

[42] Tielei Wang, Kangjie Lu, Long Lu, Simon Chung, and Wenke Lee. 2013. Jekyll

on iOS: When Benign Apps Become Evil. In Proc. of the 22Nd USENIX Conf. on
Security (SEC’13). 559–572.

[43] Jan Werner, George Baltas, Rob Dallara, Nathan Otterness, Kevin Z. Snow, Fabian

Monrose, and Michalis Polychronakis. 2016. No-Execute-After-Read: Preventing

Code Disclosure in Commodity Software. In Proc. of the 11th ACM on Asia Conf.
on Computer and Communications Security (ASIA CCS ’16). 35–46.

[44] D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake, X. Yuan, P. Colp, M.

Zheng, V. P. Kemerlis, J. Yang, and W. Aiello. 2016. Shuffler: Fast and Deployable

Continuous Code Re-randomization. In Proc. 12th USENIX Conf. on Operating
Systems Design and Implementation (OSDI’16). 367–382.

https://enterprise.comodo.com/whitepaper/AEPWhitePaper09292016.pdf?track=8996&af=7639
https://enterprise.comodo.com/whitepaper/AEPWhitePaper09292016.pdf?track=8996&af=7639
https://www.cultofmac.com/128552/apples-ios-javascript-browser-tweak-hacked-to-allow-any-app-to-run
https://www.cultofmac.com/128552/apples-ios-javascript-browser-tweak-hacked-to-allow-any-app-to-run
-malicious-code/
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/customize-exploit-protection
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/customize-exploit-protection
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/customize-exploit-protection
http://hamsa.cs.northwestern.edu/media/readings/advanced_libc.pdf
http://hamsa.cs.northwestern.edu/media/readings/advanced_libc.pdf
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
https://community.rsa.com/api/core/v3/contents/114532/data?v=1
https://community.rsa.com/api/core/v3/contents/114532/data?v=1

	Abstract
	1 Introduction
	2 Return Oriented Programming
	3 Overview
	3.1 Adversarial Model
	3.2 Goals
	3.3 Approach

	4 Design Choices
	5 Preliminary Assessment
	6 Related Work
	7 Conclusions
	References

